Home  |   Search  |   Contact  |   Conditions  |   Business Solutions  |   About

Create Account   |   Login

Join the world community for sharing Business Info !
 Already have an account ?  Login
Scientific research and development (not biotech)
Scientific method refers to a body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge. To be termed scientific, a method of inquiry must be based on gathering observable, empirical and measurable evidence subject to specific principles of reasoning. The Oxford English Dictionary says that scientific method is: "a method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses."

Although procedures vary from one field of inquiry to another, identifiable features distinguish scientific inquiry from other methods of obtaining knowledge. Scientific researchers propose hypotheses as explanations of phenomena, and design experimental studies to test these hypotheses. These steps must be repeatable, to predict future results. Theories that encompass wider domains of inquiry may bind many independently derived hypotheses together in a coherent, supportive structure. Theories, in turn, may help form new hypotheses or place groups of hypotheses into context.

Scientific inquiry is generally intended to be as objective as possible, to reduce biased interpretations of results. Another basic expectation is to document, archive and share all data and methodology so they are available for careful scrutiny by other scientists, giving them the opportunity to verify results by attempting to reproduce them. This practice, called full disclosure, also allows statistical measures of the reliability of these data to be established

"Modern science owes its origins and present flourishing state to a new scientific method which was fashioned almost entirely by Galileo Galilei (1564-1642)" —Morris Kline
Johannes Kepler (1571–1630). "Kepler shows his keen logical sense in detailing the whole process by which he finally arrived at the true orbit. This is the greatest piece of Retroductive reasoning ever performed." —C. S. Peirce, circa 1896, on Kepler’s reasoning through explanatory hypotheses

Scientific methodology has been practiced in some form for at least one thousand years. There are difficulties in a formulaic statement of method, however. As William Whewell (1794–1866) noted in his History of Inductive Science (1837) and in Philosophy of Inductive Science (1840), "invention, sagacity, genius" are required at every step in scientific method. It is not enough to base scientific method on experience alone; multiple steps are needed in scientific method, ranging from our experience to our imagination, back and forth.

In the 20th century, a hypothetico-deductive model for scientific method was formulated (for a more formal discussion, see below):

1. Use your experience: Consider the problem and try to make sense of it. Look for previous explanations. If this is a new problem to you, then move to step 2.
2. Form a conjecture: When nothing else is yet known, try to state an explanation, to someone else, or to your notebook.
3. Deduce a prediction from that explanation: If you assume 2 is true, what consequences follow?
4. Test: Look for the opposite of each consequence in order to disprove 2. It is a logical error to seek 3 directly as proof of 2. This error is called affirming the consequent.

This model underlies the scientific revolution. One thousand years ago, Alhazen demonstrated the importance of steps 1 and 4. Galileo 1638 also showed the importance of step 4 (also called Experiment) in Two New Sciences. One possible sequence in this model would be 1, 2, 3, 4. If the outcome of 4 holds, and 3 is not yet disproven, you may continue with 3, 4, 1, and so forth; but if the outcome of 4 shows 3 to be false, you will have to go back to 2 and try to invent a new 2, deduce a new 3, look for 4, and so forth.

Note that this method can never absolutely verify (prove the truth of) 2. It can only falsify 2. (This is what Einstein meant when he said, "No amount of experimentation can ever prove me right; a single experiment can prove me wrong.") However, as pointed out by Carl Hempel (1905–1997) this simple view of scientific method is incomplete; the formulation of the conjecture might itself be the result of inductive reasoning. Thus the likelihood of the prior observation being true is statistical in nature and would strictly require a Bayesian analysis. To overcome this uncertainty, experimental scientists must formulate a crucial experiment, in order for it to corroborate a more likely hypothesis.

In the 20th century, Ludwik Fleck (1896–1961) and others argued that scientists need to consider their experiences more carefully, because their experience may be biased, and that they need to be more exact when describing their experiences.

DNA example

DNA icon (25x25).png Four basic elements of scientific method are illustrated below, by example from the discovery of the structure of DNA:
  • DNA-characterizations: in this case, although the significance of the gene had been established, the mechanism was unclear to anyone, as of 1950.
  • DNA-hypotheses: Crick and Watson hypothesized that the gene had a physical basis–it was helical.
  • DNA-predictions: from earlier work on tobacco mosaic virus, Watson was aware of the significance of Crick’s formulation of the transform of a helix. Thus he was primed for the significance of the X-shape in photo 51.
  • DNA-experiments: Watson sees photo 51.

The examples are continued in "Evaluations and iterations" with DNA-iterations.


DNA-experiments

Watson and Crick showed an initial (and incorrect) proposal for the structure of DNA to a team from Kings College - Rosalind Franklin, Maurice Wilkins, and Raymond Gosling. Franklin immediately spotted the flaws which concerned the water content. Later Watson saw Franklin’s detailed X-ray diffraction images which showed an X-shape and confirmed that the structure was helical. This rekindled Watson and Crick’s model building and led to the correct structure. ..1. DNA-characterizations














 





From Wikipedia, the free encyclopedia : Scientific research and development (not biotech)
If you like to see your banner here please go to  Business Solutions